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Overview

This deck of slides goes through hypothesis testing in the context of
the linear regression model.

The corresponding chapter in Hansen is 9.
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Framework (H9.2-H9.3)

Let
0 =r(pB)
for r : RF — R,
Wish to test a null hypothesis
HO 10 = 90
against the alternative
Hy:{0:0+#00}.

Do this by looking at the sample, via a statistic 7.

Use a decision rule:
Accept the null if T < ¢,
Reject the null if T' > ¢,

for a chosen critical value c.
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Examples (H9.5)

The simplest case has 0 a single linear combination of the regression
vector f3:

0=1r'p

for some vector 7.

r could be an element of the standard basis for R¥; this picks out
particular elements of 8 = (51,...,8k)"

In the classical linear regression model, for this case, T' would be the
t-statistic.

For testing multiple linear combinations, # = R’ in the classical linear
regression model one usually uses the F-statistic.

These approaches do not extend beyond the classical linear regression
setup.
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Type I and IT errors (H9.4 and H9.6)

The statistic T" is random.

So the decision rule is subject to statistical error.
Type I error: Reject the null when it is true.
Type II error: Accept the null when it is false.
The size is the probability of a type I error.

If the distribution of T' is known under the null the critical value can
be chosen as to control size exactly.

The t-test and F-test in the classical linear regression model are again
examples.

In general, the distribution of T' (under the null) is unknown, so we
rely on asymptotic approximations instead.
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Wald test (H9.10-H9.11)

From before we know that

A

n (0= 0yVy (0 0) = xj.
Here, 6 is unknown.

Under the null 8 = 6y is known, and so

W =n(0—00)' V5 (0 — 00) = x5

Let G4 be the CDF of the Xg—distribution. Then
P(W > c|Hjy is true) — 1 — G4(c)

as n — 0o.
A test with (asymptotic) size a € (0, 1) is obtained on setting

c=G 11 -a),

q

the 1 — o quantile of Gy.
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p-value (H9.8)

Note that
c= G;l(l —a)

is decreasing in «. So for a decision rule with a smaller size, the critical
value threshold is higher.

The (asymptotic) p-value is
p=1—Gy(W).

This is the (asymptotic) probability of observing a test statistic at least
as large as the one observed in the data.

Also gives the minimal o at which one would reject the null hypothesis.
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t-statistic

When 6 is a scalar

for

which is the t-statistic.

The decision rules to reject the null when
-1
W>G,(1-a)

or
7| > @71 (1 — o)

are equivalent.

We call this a t-test by convention, but its distribution is not Student
t!
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F-statistic

Suppose that we have homoskedastic errors. Then we would use the
non-robust variance estimator

V9 =57 Qx
with s? = (&’é)/(n — k).

In the classical linear regression model, for § = R’'S3, a null of the form
0 = 0y is tested using the F-statistic

F=wW%q
which has an exact Fj, ,—-distribution there.

No longer true in our setting. The statistic never follows and F-
distribution.

2
Now, q F 7 Xg-
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Classical linear regression model

In the classical setting,
Y|X =z~ N(2'8,0%).

In this case,

(727 ) () - )

and so
B—8 cA(X'X) ! 0
(7 ) (o (7R )

because, for the off-diagonal block, we have
E(eM(X'X) 'X'e) = o%trace(X'M(X'X)™ 1) =0,
which, by normality, implies independence.
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For any linear combination § = RS, estimated by § = R’f, we then
equally have

< é;e) )‘X N (0< 02R’(X(;X)*1R 02(;\4 ))

Furthermore, with M = HA H’ the eigendecomposition and u = H'e,
e€Me=e HAH' e = v Au.

Because M is a projection matrix of rank n — k, the diagonal of A
contains k zeros and (n — k) ones. Let u; be the subset of u associated
with the (n — k) non-zero eigenvalues. Then

uy ~ N(0,0%I,_}), e'Me = uju; ~ % _,.
Therefore,
2 /
s e'Me
(n—k)72: 2 NX’?’I*]C'

a
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Let 6 be univariate. Then

P

0—190

~ N(0,1),
(X' X)"1r

and so

(rortosrs )/ V5 = gt o

Let 0 be g-variate. Then

-0 (R(X'X)"'R)'(6-0) oz

g

and so

((é_ 0y (R(X'X)"'R)~*(0 - 9>>/q82 = War Fun-i

g
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Consistency (H9.22)

Let
B(0) = P(reject Hy|6)

be the power function.
For our Wald statistic,

B(0) =P(W > c|0).
Note that lim,, ., 5(6p) = «.

A test is consistent if

lim B(0) =1

n—oo

for any fixed value 6 # 6.
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For a t-statistic
T =nV, (6 - 6))

=V, (0 -0)+ vV, (0 - 0y)
S N(O,1) + vV, (6 - 6y).

Under the null, § =6y and so T e N(0,1) as n — cc.

For any 6 # 6, the second term grows to +00 or —oo at the rate y/n
as n — oo.

Consequently, for hy = ‘{9_1/2 (6 — 6p) and Z ~ N(0,1), the power
function of the t-test with size a satisfies
B(0) = P(|Z 4+ Vnho| > z1_4/210)
= P(Z + \/Ehg < —Zlfa/Q ‘ 9) + P(Z + \/ﬁhe > Zlfoé/Q | 0)
= (I)(—Zl,a/g - \/ﬁhg) +1-— q)(zl,a/g — \/ﬁhe) —1

as n — oQ.
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For a Wald statistic the same reasoning goes through as
W = XG + 2V Z'hg + nhighy,
where, now,

Z~N(0,1,), he=V,"0-0).

The last term, nhjh,, is non-negative and grows to +o0o as n — oo.
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Asymptotic power (H9.23-H9.24)

Consistency does not tell us whether a test is powerful in practice.
Does not allow to compare different test statistics.
As n — oo, any fixed alternative lies increasingly far from the null.

We can approximate the power by keeping the alternative close to the
null as n grows.

Do this by considering a sequence of alternatives:
0, =0y +n""?h

for some fixed h.
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For the t-test we now get
T=vnV, (6 -6
=V Vg (0= 0,) + Vi Vg (0, — 00) - N(0,1) +V; " *h

and so )
T NG, 5=V, p,

which is a normal distribution that is not centered at zero.
Then

im B(0n) = ®(—21-a/2 = 0) + 1 = @(21-4/2 — &) = 7(0)
is the asymptotic local power function. (This implicitly depends on the
chosen size «.)

As h = /n(6,, — bp) and Vel/ ? is the asymptotic standard deviation of
its estimator /(A — 6y), 4 is a relative measure that reflects how large
the violation of the null is compared to the noise in the estimator. As
|6] = oo then 7(§) — 1.
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To approximate actual power for a given n and alternative 0, we solve
0 =0+ h/+y/n for h to find h = \/n(f —6y). Our power approximation

then is
7 (ﬁ V(g — 90)) .

For the Wald test we similarly, get that

W Xa(W'Vy'h)

which is a non-central xg—dis‘cribu‘cion7 wit non-centrality parameter
h'V, th.
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Confidence intervals (H7.13 and H7.18 and H9.20)

Consider again the scalar case first.

Because .
Vi (0= 0) = N(0,Vp)

as n — oo, for any a € (0,1),
P (\/ﬁf/gl/z(é _9) < cIrl(a)) Sa

or, equivalently,
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Take any a < 1/2, then

P égeﬂl%@—la_a/z) ~-Plo<b+ %@‘1(04/2)

equals

IP’(F)Jr\/E (0/2)<0<9+\/><I>1(1a/2)>%1a.

Re-arranging and exploiting that ®~1(1 — e/2) = —®~1(a/2) gives the
equivalence

P é—s—\/%@_l(l—ah)>62é—\/%<1>_1(1—a/2) —1-a.

3|
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The interval

C=0- \/gcplu — a/a), \/%@1(1 — af2)

covers the parameter § with probability 1 — « (in large samples).

Letting

we equivalently have that
P(—@'(1—a/2) <T(O) <P ' (1—9/2)) 5 1—a
That is, we can write
C={0":|T(67)] < 27" (1 — o/2)}.

This is known as ‘inversion’ of a test statistic to construct a confidence
interval.
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In the vector case, we can construct a confidence region based on the
Wald statistic.

In this case, if we take
C={0": W) < Gq_l(l —a)},

we obtain
POelC)—1-a

as n — oQ.

Remember that the probability works on the set C', not on 6 (which is
a fixed constant).
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