
M1 INTERMEDIATE ECONOMETRICS

Hypothesis testing

Koen Jochmans François Poinas

2024 — 2025



Overview

This deck of slides goes through hypothesis testing in the context of
the linear regression model.

The corresponding chapter in Hansen is 9.
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Framework (H9.2-H9.3)

Let
θ = r(β)

for r : Rk → Rq.

Wish to test a null hypothesis

H0 : θ = θ0

against the alternative

H1 : {θ : θ ̸= θ0}.

Do this by looking at the sample, via a statistic T .

Use a decision rule:

Accept the null if T ≤ c,

Reject the null if T > c,

for a chosen critical value c.
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Examples (H9.5)

The simplest case has θ a single linear combination of the regression
vector β:

θ = r′β

for some vector r.

r could be an element of the standard basis for Rk; this picks out
particular elements of β = (β1, . . . , βk)′.

In the classical linear regression model, for this case, T would be the
t-statistic.

For testing multiple linear combinations, θ = R′β in the classical linear
regression model one usually uses the F-statistic.

These approaches do not extend beyond the classical linear regression
setup.

4/ 22



Type I and II errors (H9.4 and H9.6)

The statistic T is random.

So the decision rule is subject to statistical error.

Type I error: Reject the null when it is true.

Type II error: Accept the null when it is false.

The size is the probability of a type I error.

If the distribution of T is known under the null the critical value can
be chosen as to control size exactly.

The t-test and F-test in the classical linear regression model are again
examples.

In general, the distribution of T (under the null) is unknown, so we
rely on asymptotic approximations instead.
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Wald test (H9.10-H9.11)

From before we know that

n (θ̂ − θ)′V̂ −1
θ (θ̂ − θ) →

d
χ2

q.

Here, θ is unknown.

Under the null θ = θ0 is known, and so

W = n (θ̂ − θ0)′V̂ −1
θ (θ̂ − θ0) →

d
χ2

q.

Let Gq be the CDF of the χ2
q-distribution. Then

P(W > c |H0 is true) → 1 − Gq(c)

as n → ∞.
A test with (asymptotic) size α ∈ (0, 1) is obtained on setting

c = G−1
q (1 − α),

the 1 − α quantile of Gq.
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p-value (H9.8)

Note that
c = G−1

q (1 − α)

is decreasing in α. So for a decision rule with a smaller size, the critical
value threshold is higher.

The (asymptotic) p-value is

p = 1 − Gq(W ).

This is the (asymptotic) probability of observing a test statistic at least
as large as the one observed in the data.

Also gives the minimal α at which one would reject the null hypothesis.

7/ 22



t-statistic

When θ is a scalar
W = T 2

for
T =

√
n V̂

−1/2
θ (θ̂ − θ0) →

d
N(0, 1),

which is the t-statistic.

The decision rules to reject the null when

W > G−1
q (1 − α)

or
|T | > Φ−1(1 − α/2)

are equivalent.

We call this a t-test by convention, but its distribution is not Student
t!
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F-statistic

Suppose that we have homoskedastic errors. Then we would use the
non-robust variance estimator

V̂ 0
β = s2 Q̂−1

XX

with s2 = (ê′ê)/(n − k).

In the classical linear regression model, for θ = R′β, a null of the form
θ = θ0 is tested using the F-statistic

F = W 0/q

which has an exact Fq,n−k-distribution there.

No longer true in our setting. The statistic never follows and F-
distribution.

Now, q F →
d

χ2
q.
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Classical linear regression model

In the classical setting,

Y |X = x ∼ N(x′β, σ2).

In this case,(
β̂ − β

ê

)
=
(

(X ′X)−1X ′e
Me

)
=
(

(X ′X)−1X ′

M

)
e

and so (
β̂ − β

ê

)∣∣∣∣X ∼ N

(
0,

(
σ2(X ′X)−1 0

0 σ2M

))
because, for the off-diagonal block, we have

E(e′M(X ′X)−1X ′e) = σ2trace(X ′M(X ′X)−1) = 0,

which, by normality, implies independence.
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For any linear combination θ = R′β, estimated by θ̂ = R′β̂, we then
equally have(

θ̂ − θ
ê

)∣∣∣∣X ∼ N

(
0,

(
σ2R′(X ′X)−1R 0

0 σ2M

))
Furthermore, with M = HΛH ′ the eigendecomposition and u = H ′e,

e′Me = e′HΛH ′e = u′Λu.

Because M is a projection matrix of rank n − k, the diagonal of Λ
contains k zeros and (n − k) ones. Let u1 be the subset of u associated
with the (n − k) non-zero eigenvalues. Then

u1 ∼ N(0, σ2In−k), e′Me = u′
1u1 ∼ σ2χ2

n−k.

Therefore,

(n − k) s2

σ2 = e′Me

σ2 ∼ χ2
n−k.
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Let θ be univariate. Then

θ̂ − θ

σ
√

r′(X ′X)−1r
∼ N(0, 1),

and so (
θ̂ − θ

σ
√

r′(X ′X)−1r

)/√
s2

σ2 = θ̂ − θ

s
√

r′(X ′X)−1r
∼ tn−k.

Let θ be q-variate. Then

(θ̂ − θ)′(R′(X ′X)−1R)−1(θ̂ − θ)
σ2 ∼ χ2

q

and so(
(θ̂ − θ)′(R′(X ′X)−1R)−1(θ̂ − θ)

σ2

)/
q

s2

σ2 = W 0/q ∼ Fq,n−k.
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Consistency (H9.22)

Let
β(θ) = P(reject H0|θ)

be the power function.

For our Wald statistic,

β(θ) = P(W > c | θ).

Note that limn→∞ β(θ0) = α.

A test is consistent if
lim

n→∞
β(θ) = 1

for any fixed value θ ̸= θ0.
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For a t-statistic

T =
√

n V̂
−1/2

θ (θ̂ − θ0)

=
√

n V̂
−1/2

θ (θ̂ − θ) +
√

n V̂
−1/2

θ (θ − θ0)

→
d

N(0, 1) +
√

n V
−1/2

θ (θ − θ0).

Under the null, θ = θ0 and so T →
d

N(0, 1) as n → ∞.

For any θ ̸= θ0, the second term grows to +∞ or −∞ at the rate
√

n
as n → ∞.

Consequently, for hθ = V
−1/2

θ (θ − θ0) and Z ∼ N(0, 1), the power
function of the t-test with size α satisfies

β(θ) → P(|Z +
√

nhθ| > z1−α/2 | θ)
= P(Z +

√
nhθ < −z1−α/2 | θ) + P(Z +

√
nhθ > z1−α/2 | θ)

= Φ(−z1−α/2 −
√

nhθ) + 1 − Φ(z1−α/2 −
√

nhθ) → 1

as n → ∞.
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For a Wald statistic the same reasoning goes through as

W →
d

χ2
q + 2

√
n Z ′hθ + n h′

θhθ,

where, now,

Z ∼ N(0, Iq), hθ = V
−1/2
θ (θ − θ0).

The last term, nh′
θhθ, is non-negative and grows to +∞ as n → ∞.
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Asymptotic power (H9.23-H9.24)

Consistency does not tell us whether a test is powerful in practice.

Does not allow to compare different test statistics.

As n → ∞, any fixed alternative lies increasingly far from the null.

We can approximate the power by keeping the alternative close to the
null as n grows.

Do this by considering a sequence of alternatives:

θn = θ0 + n−1/2h

for some fixed h.
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For the t-test we now get

T =
√

n V̂
−1/2

θ (θ̂ − θ0)

=
√

n V̂
−1/2

θ (θ̂ − θn) +
√

n V̂
−1/2

θ (θn − θ0) →
d

N(0, 1) + V
−1/2

θ h

and so
T →

d
N(δ, 1), δ = V

−1/2
θ h,

which is a normal distribution that is not centered at zero.

Then

lim
n→∞

β(θn) = Φ(−z1−α/2 − δ) + 1 − Φ(z1−α/2 − δ) = π(δ)

is the asymptotic local power function. (This implicitly depends on the
chosen size α.)

As h =
√

n(θn − θ0) and V
1/2

θ is the asymptotic standard deviation of
its estimator

√
n(θ̂ − θ0), δ is a relative measure that reflects how large

the violation of the null is compared to the noise in the estimator. As
|δ| → ∞ then π(δ) → 1.
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To approximate actual power for a given n and alternative θ, we solve
θ = θ0 + h/

√
n for h to find h =

√
n(θ − θ0). Our power approximation

then is
π
(√

n V −1/2(θ − θ0)
)

.

For the Wald test we similarly, get that

W →
d

χ2
q(h′V −1

θ h)

which is a non-central χ2
q-distribution, wit non-centrality parameter

h′V −1
θ h.
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Confidence intervals (H7.13 and H7.18 and H9.20)

Consider again the scalar case first.

Because √
n (θ̂ − θ) →

d
N(0, Vθ)

as n → ∞, for any α ∈ (0, 1),

P
(√

nV̂
−1/2

θ (θ̂ − θ) ≤ Φ−1(α)
)

→ α

or, equivalently,

P

θ̂ ≤ θ +

√
V̂θ

n
Φ−1(α)

 → α.
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Take any α < 1/2, then

P

θ̂ ≤ θ +

√
V̂θ

n
Φ−1(1 − α/2)

− P

θ̂ ≤ θ +

√
V̂θ

n
Φ−1(α/2)


equals

P

θ +

√
V̂θ

n
Φ−1(α/2) < θ̂ ≤ θ +

√
V̂θ

n
Φ−1(1 − α/2)

 → 1 − α.

Re-arranging and exploiting that Φ−1(1 − α/2) = −Φ−1(α/2) gives the
equivalence

P

θ̂ +

√
V̂θ

n
Φ−1(1 − α/2) > θ ≥ θ̂ −

√
V̂θ

n
Φ−1(1 − α/2)

 → 1 − α.
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The interval

C =

θ̂ −

√
V̂θ

n
Φ−1(1 − α/2),

√
V̂θ

n
Φ−1(1 − α/2)


covers the parameter θ with probability 1 − α (in large samples).

Letting

T (θ) = θ̂ − θ√
V̂θ/n

,

we equivalently have that

P
(
−Φ−1(1 − α/2) < T (θ) ≤ Φ−1(1 − α/2)

)
→ 1 − α

That is, we can write

C = {θ∗ : |T (θ∗)| ≤ Φ−1(1 − α/2)}.

This is known as ‘inversion’ of a test statistic to construct a confidence
interval.
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In the vector case, we can construct a confidence region based on the
Wald statistic.

In this case, if we take

C = {θ∗ : W (θ∗) ≤ G−1
q (1 − α)},

we obtain
P(θ ∈ C) → 1 − α

as n → ∞.

Remember that the probability works on the set C, not on θ (which is
a fixed constant).
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