

M1 INTERMEDIATE ECONOMETRICS

Hypothesis testing

Koen Jochmans François Poinas

 $2024 - 2025$

This deck of slides goes through hypothesis testing in the context of the linear regression model.

The corresponding chapter in Hansen is 9.

Framework (H9.2-H9.3)

Let

$$
\theta = r(\beta)
$$

for $r: \mathbb{R}^k \to \mathbb{R}^q$.

Wish to test a null hypothesis

$$
\mathbb{H}_0: \theta = \theta_0
$$

against the alternative

$$
\mathbb{H}_1: \{\theta: \theta \neq \theta_0\}.
$$

Do this by looking at the sample, via a statistic *T*.

Use a decision rule:

Accept the null if $T \leq c$,

Reject the null if $T > c$,

for a chosen critical value *c*.

The simplest case has θ a single linear combination of the regression vector *β*:

$$
\theta = r'\beta
$$

for some vector *r*.

r could be an element of the standard basis for \mathbb{R}^k ; this picks out particular elements of $\beta = (\beta_1, \dots, \beta_k)'$.

In the classical linear regression model, for this case, *T* would be the t-statistic.

For testing multiple linear combinations, $\theta = \mathbf{R}'\beta$ in the classical linear regression model one usually uses the F-statistic.

These approaches do not extend beyond the classical linear regression setup.

The statistic *T* is random.

So the decision rule is subject to statistical error.

Type I error: Reject the null when it is true.

Type II error: Accept the null when it is false.

The size is the probability of a type I error.

If the distribution of *T* is known under the null the critical value can be chosen as to control size exactly.

The t-test and F-test in the classical linear regression model are again examples.

In general, the distribution of *T* (under the null) is unknown, so we rely on asymptotic approximations instead.

Wald test (H9.10-H9.11)

From before we know that

$$
n(\hat{\theta} - \theta)^{\prime} \hat{V}_{\theta}^{-1}(\hat{\theta} - \theta) \rightarrow \chi_q^2.
$$

Here, θ is unknown.

Under the null $\theta = \theta_0$ is known, and so

$$
W = n (\hat{\theta} - \theta_0)'\hat{V}_{\theta}^{-1}(\hat{\theta} - \theta_0) \rightarrow \chi_q^2.
$$

Let G_q be the CDF of the χ_q^2 -distribution. Then

$$
\mathbb{P}(W > c \,|\, \mathbb{H}_0 \text{ is true}) \to 1 - G_q(c)
$$

as $n \to \infty$.

A test with (asymptotic) size $\alpha \in (0,1)$ is obtained on setting

$$
c = G_q^{-1}(1 - \alpha),
$$

the $1 - \alpha$ quantile of G_q .

Note that

$$
c = G_q^{-1}(1 - \alpha)
$$

is decreasing in α . So for a decision rule with a smaller size, the critical value threshold is higher.

The (asymptotic) p-value is

$$
p = 1 - G_q(W).
$$

This is the (asymptotic) probability of observing a test statistic at least as large as the one observed in the data.

Also gives the minimal α at which one would reject the null hypothesis.

t-statistic

When θ is a scalar

$$
W = T^2
$$

for

$$
T = \sqrt{n} \,\hat{V}_{\theta}^{-1/2}(\hat{\theta} - \theta_0) \xrightarrow{d} N(0, 1),
$$

which is the t-statistic.

The decision rules to reject the null when

 $W > G_q^{-1}(1-\alpha)$

or

$$
|T| > \Phi^{-1}(1 - \alpha/2)
$$

are equivalent.

We call this a t-test by convention, but its distribution is not Student t!

F-statistic

Suppose that we have homoskedastic errors. Then we would use the non-robust variance estimator

$$
\hat{V}^0_{\beta}=s^2\,\hat{Q}^{-1}_{XX}
$$

with $s^2 = (\hat{\mathbf{e}}' \hat{\mathbf{e}})/(n - k)$.

In the classical linear regression model, for $\theta = \mathbf{R}'\beta$, a null of the form $\theta = \theta_0$ is tested using the F-statistic

$$
F=W^0/q
$$

which has an exact $F_{a,n-k}$ -distribution there.

No longer true in our setting. The statistic never follows and Fdistribution.

Now,
$$
q F \to \chi_q^2
$$
.

Classical linear regression model

In the classical setting,

$$
Y|X = x \sim N(x'\beta, \sigma^2).
$$

In this case,

$$
\left(\begin{array}{c}\hat{\beta}-\beta \\ \hat{e}\end{array}\right)=\left(\begin{array}{c}(X'X)^{-1}X'e \\ Me\end{array}\right)=\left(\begin{array}{c}(X'X)^{-1}X' \\ M\end{array}\right)e
$$

and so

$$
\begin{pmatrix}\n\hat{\beta} - \beta \\
\hat{e}\n\end{pmatrix}\n\begin{pmatrix}\n\mathbf{X} \sim N\n\begin{pmatrix}\n0, \begin{pmatrix}\n\sigma^2 (\mathbf{X}'\mathbf{X})^{-1} & 0 \\
0 & \sigma^2 \mathbf{M}\n\end{pmatrix}\n\end{pmatrix}
$$

because, for the off-diagonal block, we have

$$
\mathbb{E}(\boldsymbol{e}'\boldsymbol{M}(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{e})=\sigma^2\mathrm{trace}(\boldsymbol{X}'\boldsymbol{M}(\boldsymbol{X}'\boldsymbol{X})^{-1})=0,
$$

which, by normality, implies independence.

For any linear combination $\theta = \mathbf{R}'\beta$, estimated by $\hat{\theta} = \mathbf{R}'\hat{\beta}$, we then equally have

$$
\begin{pmatrix}\n\hat{\theta} - \theta \\
\hat{e}\n\end{pmatrix}\n\begin{pmatrix}\n\mathbf{X} \sim N\n\begin{pmatrix}\n0, \begin{pmatrix}\n\sigma^2 \mathbf{R}' (\mathbf{X}'\mathbf{X})^{-1} \mathbf{R} & 0 \\
0 & \sigma^2 \mathbf{M}\n\end{pmatrix}\n\end{pmatrix}
$$

Furthermore, with $M = H\Lambda H'$ the eigendecomposition and $u = H'e$,

$e'Me = e'H\Lambda H'e = u'\Lambda u.$

Because *M* is a projection matrix of rank $n - k$, the diagonal of Λ contains *k* zeros and $(n-k)$ ones. Let u_1 be the subset of *u* associated with the $(n - k)$ non-zero eigenvalues. Then

$$
\mathbf{u_1} \sim N(0, \sigma^2 \mathbf{I}_{n-k}), \qquad \mathbf{e}^{\prime} \mathbf{M} \mathbf{e} = \mathbf{u}_1^{\prime} \mathbf{u}_1 \sim \sigma^2 \chi^2_{n-k}.
$$

Therefore,

$$
(n-k)\frac{s^2}{\sigma^2} = \frac{e'Me}{\sigma^2} \sim \chi^2_{n-k}.
$$

Let θ be univariate. Then

$$
\frac{\hat{\theta} - \theta}{\sigma \sqrt{r'(\mathbf{X}'\mathbf{X})^{-1}r}} \sim N(0, 1),
$$

and so

$$
\left(\frac{\hat{\theta}-\theta}{\sigma\sqrt{r'(X'X)^{-1}r}}\right)\bigg/\sqrt{\frac{s^2}{\sigma^2}}=\frac{\hat{\theta}-\theta}{s\sqrt{r'(X'X)^{-1}r}}\sim t_{n-k}.
$$

Let θ be *q*-variate. Then

$$
\frac{(\hat{\theta} - \theta)'(\mathbf{R}'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R})^{-1}(\hat{\theta} - \theta)}{\sigma^2} \sim \chi_q^2
$$

and so

$$
\left(\frac{(\hat{\theta}-\theta)'(\mathbf{R}'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R})^{-1}(\hat{\theta}-\theta)}{\sigma^2}\right)\bigg/ q\frac{s^2}{\sigma^2}=W^0/q\sim F_{q,n-k}.
$$

Let

$$
\beta(\theta) = \mathbb{P}(\text{reject } \mathbb{H}_0 | \theta)
$$

be the power function.

For our Wald statistic,

$$
\beta(\theta) = \mathbb{P}(W > c \, | \, \theta).
$$

Note that $\lim_{n\to\infty} \beta(\theta_0) = \alpha$.

A test is consistent if

 $\lim_{n\to\infty}\beta(\theta)=1$

for any fixed value $\theta \neq \theta_0$.

For a t-statistic

$$
T = \sqrt{n} \hat{V}_{\theta}^{-1/2} (\hat{\theta} - \theta_0)
$$

= $\sqrt{n} \hat{V}_{\theta}^{-1/2} (\hat{\theta} - \theta) + \sqrt{n} \hat{V}_{\theta}^{-1/2} (\theta - \theta_0)$
 $\rightarrow N(0, 1) + \sqrt{n} V_{\theta}^{-1/2} (\theta - \theta_0).$

Under the null, $\theta = \theta_0$ and so $T \to N(0, 1)$ as $n \to \infty$.

For any $\theta \neq \theta_0$, the second term grows to $+\infty$ or $-\infty$ at the rate \sqrt{n} as $n \to \infty$.

Consequently, for $h_{\theta} = V_{\theta}^{-1/2}$ $\mathcal{L}_{\theta}^{-1/2}(\theta - \theta_0)$ and $Z \sim N(0, 1)$, the power function of the t-test with size α satisfies

$$
\beta(\theta) \rightarrow \mathbb{P}(|Z + \sqrt{n}h_{\theta}| > z_{1-\alpha/2} | \theta)
$$

= $\mathbb{P}(Z + \sqrt{n}h_{\theta} < -z_{1-\alpha/2} | \theta) + \mathbb{P}(Z + \sqrt{n}h_{\theta} > z_{1-\alpha/2} | \theta)$
= $\Phi(-z_{1-\alpha/2} - \sqrt{n}h_{\theta}) + 1 - \Phi(z_{1-\alpha/2} - \sqrt{n}h_{\theta}) \rightarrow 1$

as $n \to \infty$.

For a Wald statistic the same reasoning goes through as

$$
W \underset{d}{\rightarrow} \chi_q^2 + 2\sqrt{n} Z' h_\theta + n h'_\theta h_\theta,
$$

where, now,

$$
Z \sim N(0, I_q), \qquad h_{\theta} = \mathbf{V}_{\theta}^{-1/2}(\theta - \theta_0).
$$

The last term, $nh'_{\theta}h_{\theta}$, is non-negative and grows to $+\infty$ as $n \to \infty$.

Consistency does not tell us whether a test is powerful in practice.

Does not allow to compare different test statistics.

As $n \to \infty$, any fixed alternative lies increasingly far from the null.

We can approximate the power by keeping the alternative close to the null as *n* grows.

Do this by considering a sequence of alternatives:

$$
\theta_n = \theta_0 + n^{-1/2}h
$$

for some fixed *h*.

For the t-test we now get

$$
T = \sqrt{n} \, \hat{V}_{\theta}^{-1/2} (\hat{\theta} - \theta_0)
$$

= $\sqrt{n} \, \hat{V}_{\theta}^{-1/2} (\hat{\theta} - \theta_n) + \sqrt{n} \, \hat{V}_{\theta}^{-1/2} (\theta_n - \theta_0) \rightarrow N(0, 1) + V_{\theta}^{-1/2} h$

and so

$$
T \underset{d}{\rightarrow} N(\delta, 1), \qquad \delta = V_{\theta}^{-1/2}h,
$$

which is a normal distribution that is not centered at zero.

Then

$$
\lim_{n \to \infty} \beta(\theta_n) = \Phi(-z_{1-\alpha/2} - \delta) + 1 - \Phi(z_{1-\alpha/2} - \delta) = \pi(\delta)
$$

is the asymptotic local power function. (This implicitly depends on the chosen size α .)

As $h = \sqrt{n}(\theta_n - \theta_0)$ and $V_\theta^{1/2}$ $\theta_{\theta}^{t/2}$ is the asymptotic standard deviation of its $h = \sqrt{n(n - \theta_0)}$ and v_θ is the asymptotic standard deviation of its estimator $\sqrt{n}(\hat{\theta} - \theta_0)$, δ is a relative measure that reflects how large the violation of the null is compared to the noise in the estimator. As $|\delta| \to \infty$ then $\pi(\delta) \to 1$.

To approximate actual power for a given *n* and alternative θ , we solve *θ* = $θ_0 + h/\sqrt{n}$ for *h* to find $h = \sqrt{n}(\theta - \theta_0)$. Our power approximation then is

$$
\pi\left(\sqrt{n}\,V^{-1/2}(\theta-\theta_0)\right).
$$

For the Wald test we similarly, get that

$$
W \to \chi_q^2(h' \mathbf{V}_{\theta}^{-1} h)
$$

which is a non-central χ_q^2 -distribution, wit non-centrality parameter $h'V_{\theta}^{-1}h$.

Consider again the scalar case first.

Because

$$
\sqrt{n} \left(\hat{\theta} - \theta \right) \underset{d}{\rightarrow} N(0, V_{\theta})
$$

as $n \to \infty$, for any $\alpha \in (0, 1)$,

$$
\mathbb{P}\left(\sqrt{n}\hat{V}_{\theta}^{-1/2}(\hat{\theta}-\theta) \leq \Phi^{-1}(\alpha)\right) \to \alpha
$$

or, equivalently,

$$
\mathbb{P}\left(\hat{\theta} \leq \theta + \sqrt{\frac{\hat{V}_{\theta}}{n}} \, \Phi^{-1}(\alpha)\right) \to \alpha.
$$

Take any $\alpha < 1/2$, then

$$
\mathbb{P}\left(\hat{\theta} \leq \theta + \sqrt{\frac{\hat{V}_{\theta}}{n}} \, \Phi^{-1}(1-\alpha/2)\right) - \mathbb{P}\left(\hat{\theta} \leq \theta + \sqrt{\frac{\hat{V}_{\theta}}{n}} \, \Phi^{-1}(\alpha/2)\right)
$$

equals

$$
\mathbb{P}\left(\theta+\sqrt{\frac{\hat{V}_{\theta}}{n}}\,\Phi^{-1}(\alpha/2)<\hat{\theta}\leq\theta+\sqrt{\frac{\hat{V}_{\theta}}{n}}\,\Phi^{-1}(1-\alpha/2)\right)\to 1-\alpha.
$$

Re-arranging and exploiting that $\Phi^{-1}(1 - \alpha/2) = -\Phi^{-1}(\alpha/2)$ gives the equivalence

$$
\mathbb{P}\left(\hat{\theta} + \sqrt{\frac{\hat{V}_{\theta}}{n}} \Phi^{-1}(1-\alpha/2) > \theta \ge \hat{\theta} - \sqrt{\frac{\hat{V}_{\theta}}{n}} \Phi^{-1}(1-\alpha/2)\right) \to 1-\alpha.
$$

The interval

$$
C = \left[\hat{\theta} - \sqrt{\frac{\hat{V}_{\theta}}{n}} \, \Phi^{-1}(1-\alpha/2), \sqrt{\frac{\hat{V}_{\theta}}{n}} \, \Phi^{-1}(1-\alpha/2)\right]
$$

covers the parameter θ with probability $1 - \alpha$ (in large samples).

Letting

$$
T(\theta) = \frac{\hat{\theta} - \theta}{\sqrt{\hat{v}_{\theta}/n}},
$$

we equivalently have that

$$
\mathbb{P}\left(-\Phi^{-1}(1-\alpha/2) < T(\theta) \le \Phi^{-1}(1-\alpha/2)\right) \to 1-\alpha
$$

That is, we can write

$$
C = \{\theta^* : |T(\theta^*)| \le \Phi^{-1}(1 - \alpha/2)\}.
$$

This is known as 'inversion' of a test statistic to construct a confidence interval.

In the vector case, we can construct a confidence region based on the Wald statistic.

In this case, if we take

$$
C = \{ \theta^* : W(\theta^*) \le G_q^{-1}(1 - \alpha) \},\
$$

we obtain

$$
\mathbb{P}(\theta \in C) \to 1 - \alpha
$$

as $n \to \infty$.

Remember that the probability works on the set C , not on θ (which is a fixed constant).